Effect of Noisy Galvanic Vestibular Stimulation on Ocular Vestibular-Evoked Myogenic Potentials to Bone-Conducted Vibration

نویسندگان

  • Shinichi Iwasaki
  • Shotaro Karino
  • Teru Kamogashira
  • Fumiharu Togo
  • Chisato Fujimoto
  • Yoshiharu Yamamoto
  • Tatsuya Yamasoba
چکیده

OBJECTIVE Galvanic vestibular stimulation (GVS) delivered as zero-mean current noise (noisy GVS) has been shown to improve static and dynamic postural stability probably by enhancing vestibular information. The purpose of this study was to examine the effect of an imperceptible level noisy GVS on ocular vestibular-evoked myogenic potentials (oVEMPs) in response to bone-conducted vibration (BCV). MATERIALS AND METHODS oVEMPs to BCV were measured during the application of white noise GVS with an amplitude ranging from 0 to 300 µA [in root mean square (RMS)] in 20 healthy subjects. Artifacts in the oVEMPs caused by GVS were reduced by inverting the waveforms of noisy GVS in the later half of the stimulus from the one in the early half. We examined the amplitudes of N1 and N1-P1 and their latencies. RESULTS Noisy GVS significantly increased the N1 and N1-P1 amplitudes (p < 0.05) whereas it had no significant effects on N1 or P1 latencies (p > 0.05). Noisy GVS had facilitatory effects in 79% of ears. The amplitude of the optimal stimulus was 127 ± 14 µA, and it increased the N1 and N1-P1 amplitude by 75.9 ± 15% and 47.7 ± 9.1%, respectively, as compared with 0 µA session (p < 0.05). CONCLUSION Noisy GVS can increase the amplitude of oVEMPs to BCV in healthy subjects probably via stochastic resonance. The results of the present study suggest that noisy GVS may improve static and dynamic postural stability by enhancing the function of the vestibular afferents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Cognitive Tasks on the Ocular Vestibular Evoked Myogenic Potentials in Healthy People

Introduction: The majority of the daily life activities involve the concurrent performance of simultaneously challenging motor and cognitive activities, such as talking while walking, which requires the vestibular system for balance. Functional balance allows the brain to interpret and integrate the sensory information from our physical and social environment. This study aimed to investig...

متن کامل

Cervical and ocular vestibular evoked myogenic potentials in multiple sclerosis participants

  Background: Multiple sclerosis (MS) is a chronic neurological disease that affects brain and spinal cord. The infratentorial region contains the cerebellum and brainstem. Vestibular evoked myogenic potentials (VEMPs) are short-latency myogenic responses. Cervical vestibular evoked myogenic potential (cVEMP) is a manifestation of vestibulocolic reflex and ocular vestibular evoked myogenic pote...

متن کامل

Vestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients With Conductive and Sensorineural Hearing Loss and a Group With Vestibular Schawannoma

Introduction: Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients.   ...

متن کامل

A review of the scientific basis and practical application of a new test of utricular function--ocular vestibular-evoked myogenic potentials to bone-conducted vibration.

This is a review of recently published papers showing that bone-conducted vibration of the head causes linear acceleration stimulation of both inner ears and this linear acceleration is an effective way of selectively activating otolithic afferent neurons. This simple stimulus is used in a new test to evaluate clinically the function of the otoliths of the human inner ear. Single neuron studies...

متن کامل

Sustained and Transient Vestibular Systems: A Physiological Basis for Interpreting Vestibular Function

Otolithic afferents with regular resting discharge respond to gravity or low-frequency linear accelerations, and we term these the static or sustained otolithic system. However, in the otolithic sense organs, there is anatomical differentiation across the maculae and corresponding physiological differentiation. A specialized band of receptors called the striola consists of mainly type I recepto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017